√ Pengertian Anabolisme, Reaksi Dan Tahapannya (Lengkap!)
Konten [Tampil]
Pengertian Anabolisme
Anabolisme ialah proses menyusun beberapa senyawa organik sederhana menjadi senyawa kimia atau molekul kompleks. Adapun pola reaksi anabolisme ialah fotosintesis dan kemosintesis.Sederhananya, anabolisme ialah reaksi kimia yang menyusun senyawa sederhana menjadi senyawa yang lebih kompleks. Reaksi ini terjadi di dalam badan tubuh manusia
Menurut wikipedia Kompleks ialah suatu kesatuan yang terdiri dari sejumlah bagian, khususnya yang mempunyai kepingan yang saling bekerjasama dan saling tergantung.
Oya.. kau sudah tahu wacana metabolisme kan?
Yap betul! Metabolisme ialah reaksi kimia yang terjadi di dalam badan makhluk hidup, termasuk manusia.
Metabolisme dibagi menjadi dua, yaitu anabolisme dan katabolisme. Definisi anabolisme sudah kita bahas diatas. Lantas, apa itu katabolisme? Apa definisinya?
Katabolisme ialah reaksi penguraian senyawa kompleks menjadi senyawa yang lebih sederhana dengan proteksi enzim.
Untuk pembahasan lebih lengkap wacana Katabolisme bisa anda dapatkan di link dibawah:
KATABOLISME: Pengertian, respirasi sel, glikolisis, Siklus Krebs, transport elektron, fermentasi, fosforilasi oksidatif dan dekarboksilasiKembali ke anabolisme..
Proses ini membutuhkan energi dari luar. Energi yang diharapkan dalam reaksi anabolisme sanggup berupa energi cahaya atau energi kimia. Energi tersebut, selanjutnya dipakai untuk mengikat senyawa-senyawa sederhana tersebut menjadi senyawa yang lebih kompleks.
Jadi, dalam reaksi anabolisme energi yang diharapkan tersebut tidak hilang, tetapi tersimpan dalam bentuk ikatan-ikatan kimia pada senyawa kompleks yang terbentuk.
Baca juga: Pengertian Glikolisis.
Tahapan Anabolisme
- Produksi prekursor menyerupai asam amino, monosakarida, dan nukleotida.
- Aktivasi senyawa-senyawa tersebut menjadi bentuk reaktif memakai energi dari ATP.
- Penggabungan prekursor tersebut menjadi molekul kompleks, menyerupai protein, polisakarida, lemak dan asam nukleat.
Anabolisme yang memakai energi cahaya dikenal dengan fotosintesis, sedangkan anabolisme yang memakai energi kimia dikenal dengan kemosintesis.
Hasil-hasil anabolisme mempunyai kegunaan dalam fungsi yang esensial (diperlukan). Hasil-hasil tersebut contohnya glikogen dan protein sebagai materi bakar dalam tubuh, asam nukleat untuk pengkopian warta genetik.
Protein, lipid, dan karbohidrat menyusun struktur badan makhluk hidup, baik intraselular maupun ekstraselular. Bila sintesis bahan-bahan ini lebih cepat dari perombakannya, maka organisme akan tumbuh.
Tahapan anabolisme secara sederhana bisa dilihat pada sketsa dibawah:
FOTOSINTESIS
Fotosintesis |
Pengertian Fotosintesis
Fotosintesis ialah suatu proses biokimia pembentukan zat kuliner atau energi yaitu glukosa yang dilakukan tumbuhan, alga, dan beberapa jenis kuman dengan memakai zat hara, karbon dioksida, dan air serta dibutuhkan proteksi energi cahaya matahari.
Hampir semua makhluk hidup bergantung dari energi yang dihasilkan dalam fotosintesis. Akibatnya fotosintesis menjadi sangat penting bagi kehidupan di bumi. Fotosintesis juga berjasa menghasilkan sebagian besar oksigen yang terdapat di atmosfer bumi.
Organisme yang menghasilkan energi melalui fotosintesis (photos berarti cahaya) disebut sebagai fototrof. Fotosintesis merupakan salah satu cara asimilasi karbon lantaran dalam fotosintesis karbon bebas dari CO2 diikat (difiksasi) menjadi gula sebagai molekul penyimpan energi.
Cara lain yang ditempuh organisme untuk mengasimilasi karbon ialah melalui kemosintesis, yang dilakukan oleh sejumlah kuman belerang.
Daun daerah berlangsungnya fotosintesis. Proses fotosintesis tidak sanggup berlangsung pada setiap sel, tetapi hanya pada sel yang mengandung pigmen fotosintetik. Sel yang tidak mempunyai pigmen fotosintetik ini tidak bisa melaksanakan proses fotosintesis.
Pada percobaan Jan Ingenhousz, sanggup diketahui bahwa intensitas cahaya menghipnotis laju fotosintesis pada tumbuhan. Hal ini sanggup terjadi lantaran perbedaan energi yang dihasilkan oleh setiap spektrum cahaya.
Di samping adanya perbedaan energi tersebut, faktor lain yang menjadi pembeda ialah kemampuan daun dalam menyerap banyak sekali spektrum cahaya yang berbeda tersebut. Perbedaan kemampuan daun dalam menyerap banyak sekali spektrum cahaya tersebut disebabkan adanya perbedaan jenis pigmen yang terkandung pada jaringan daun.
Di dalam daun terdapat mesofil yang terdiri atas jaringan bunga karang dan jaringan pagar. Pada kedua jaringan ini, terdapat kloroplas yang mengandung pigmen hijau klorofil. Pigmen ini merupakan salah satu dari pigmen fotosintesis yang berperan penting dalam menyerap energi matahari.
Kloroplas terdapat pada semua kepingan tumbuhan yang berwarna hijau, termasuk batang dan buah yang belum matang. Di dalam kloroplas terdapat pigmen klorofil yang berperan dalam proses fotosintesis. Kloroplas mempunyai bentuk menyerupai cakram dengan ruang yang disebut stroma. Stroma ini dibungkus oleh dua lapisan membran. Membran stroma ini disebut tilakoid, yang didalamnya terdapat ruang-ruang antar membran yang disebut lokuli.
Di dalam stroma juga terdapat lamela-lamela yang bertumpuk-tumpuk membentuk grana (kumpulan granum). Granum sendiri terdiri atas membran tilakoid yang merupakan daerah terjadinya reaksi jelas dan ruang tilakoid yang merupakan ruang di antara membran tilakoid. Bila sebuah granum disayat maka akan dijumpai beberapa komponen menyerupai protein, klorofil a, klorofil b, karetonoid, dan lipid.
Secara keseluruhan, stroma berisi protein, enzim, DNA, RNA, gula fosfat, ribosom, vitamin-vitamin, dan juga ion-ion logam menyerupai mangan (Mn), besi (Fe), maupun perak (Cu). Pigmen fotosintetik terdapat pada membran tilakoid.
Sedangkan, pengubahan energi cahaya menjadi energi kimia berlangsung dalam tilakoid dengan produk final berupa glukosa yang dibuat di dalam stroma. Klorofil sendiri bersama-sama hanya merupakan sebagian dari perangkat dalam fotosintesis yang dikenal sebagai fotosistem.
Berikut ialah gambar kloroplas:
Struktur kloroplas |
Struktur kloroplas
Struktur kloroplas terdiri dari sekitar 12 bagian, berikut ialah bagian-bagian dari kloroplas:- Membran luar
- Ruang antar membran
- Membran dalam
- Stroma
- Lumen tilakoid (didalam tilakoid)
- Membran tilakoid
- Granum (kumpulan tilakoid)
- Tilakoid (lamella)
- Pati
- Ribosom
- DNA plastid
- Plastoglobula
Fotosintesis Tumbuhan
Tumbuhan bersifat autotrof. Autotrof artinya sanggup mensintesis kuliner eksklusif dari senyawa anorganik. Tumbuhan memakai karbon dioksida dan air untuk menghasilkan gula dan oksigen yang diharapkan sebagai makanannya. Energi untuk menjalankan proses ini berasal dari fotosintesis. Perhatikan persamaan reaksi fotosintesis yang termasuk reaksi anabolisme ini menghasilkan glukosa berikut ini:6H2O + 6CO2 + cahaya → C6H12O6 (glukosa) + 6O2
Glukosa sanggup dipakai untuk membentuk senyawa organik lain menyerupai selulosa dan sanggup pula dipakai sebagai materi bakar. Proses ini berlangsung melalui respirasi seluler yang terjadi baik pada binatang maupun tumbuhan. Secara umum reaksi yang terjadi pada respirasi seluler berkebalikan dengan persamaan di atas.
Pada respirasi, gula (glukosa) dan senyawa lain akan bereaksi dengan oksigen untuk menghasilkan karbon dioksida, air, dan energi kimia. Tumbuhan menangkap cahaya memakai pigmen yang disebut klorofil. Pigmen inilah yang memberi warna hijau pada tumbuhan. Klorofil terdapat dalam organel yang disebut kloroplas. klorofil menyerap cahaya yang akan dipakai dalam fotosintesis.
Meskipun seluruh kepingan badan tumbuhan yang berwarna hijau mengandung kloroplas, namun sebagian besar energi dihasilkan di daun. Di dalam daun terdapat lapisan sel yang disebut mesofil yang mengandung setengah juta kloroplas setiap milimeter perseginya. Cahaya akan melewati lapisan epidermis tanpa warna dan yang transparan, menuju mesofil, daerah terjadinya sebagian besar proses fotosintesis. Permukaan daun biasanya dilapisi oleh kutikula dari lilin yang bersifat anti air untuk mencegah terjadinya penyerapan sinar matahari ataupun penguapan air yang berlebihan.
Proses Fotosintesis
Proses fotosintesis sangat kompleks lantaran melibatkan semua cabang ilmu pengetahuan alam utama, menyerupai fisika, kimia, maupun biologi sendiri. Pada tumbuhan, organ utama tempa berlangsungnya fotosintesis ialah daun.
Namun, secara umum semua sel yang mempunyai kloroplas berpotensi untuk melangsungkan reaksi fotosintesis. Di organel inilah daerah berlangsungnya fotosintesis, tepatnya pada kepingan stroma. Hasil fotosintesis (disebut fotosintat) biasanya dikirim ke jaringan-jaringan terdekat terlebih dahulu.
Pada dasarnya, rangkaian reaksi fotosintesis sanggup dibagi menjadi dua kepingan utama: reaksi jelas (karena memerlukan cahaya) dan reaksi gelap (tidak memerlukan cahaya tetapi memerlukan karbon dioksida).
Reaksi Terang
Reaksi jelas terjadi pada grana (tunggal: granum), sedangkan reaksi gelap terjadi di dalam stroma.Dalam reaksi terang, terjadi konversi energi cahaya menjadi energi kimia dan menghasilkan oksigen (O2). Reaksi jelas ialah proses untuk menghasilkan ATP dan reduksi NADPH2. Reaksi ini memerlukan molekul air dan cahaya matahari. Proses diawali dengan penangkapan foton oleh pigmen sebagai antena.
Reaksi jelas melibatkan dua fotosistem yang saling bekerja sama, yaitu fotosistem I dan II. Fotosistem I (PS I) berisi sentra reaksi P700, yang berarti bahwa fotosistem ini optimal menyerap cahaya pada panjang gelombang 700 nm, sedangkan fotosistem II (PS II) berisi sentra reaksi P680 dan optimal menyerap cahaya pada panjang gelombang 680 nm.
Mekanisme reaksi jelas diawali dengan tahap dimana fotosistem II menyerap cahaya matahari sehingga elektron klorofil pada PS II tereksitasi dan mengakibatkan muatan menjadi tidak stabil. Untuk menstabilkan kembali, PS II akan mengambil elektron dari molekul H2O yang ada disekitarnya.
Molekul air akan dipecahkan oleh ion mangan (Mn) yang bertindak sebagai enzim. Hal ini akan menimbulkan pelepasan H+ di lumen tilakoid. Dengan memakai elektron dari air, selanjutnya PS II akan mereduksi plastokuinon (PQ) membentuk PQH2.
Plastokuinon merupakan molekul kuinon yang terdapat pada membran lipid bilayer tilakoid. Plastokuinon ini akan mengirimkan elektron dari PS II ke suatu pompa H+ yang disebut sitokrom b6-f kompleks. Reaksi keseluruhan yang terjadi di PS II adalah: 2H2O + 4 foton + 2PQ + 4H- → 4H+ + O2 + 2PQH2
Sitokrom b6-f kompleks berfungsi untuk membawa elektron dari PS II ke PS I dengan mengoksidasi PQH2 dan mereduksi protein kecil yang sangat gampang bergerak dan mengandung tembaga, yang dinamakan plastosianin (PC). Kejadian ini juga mengakibatkan terjadinya pompa H+ dari stroma ke membran tilakoid. Reaksi yang terjadi pada sitokrom b6-f kompleks adalah: 2PQH2 + 4PC(Cu2+) → 2PQ + 4PC(Cu+) + 4 H+ (lumen).
Reaksi Terang dari fotosintesis dalam membran Tilakoid
Elektron dari sitokrom b6-f kompleks akan diterima oleh fotosistem I. Fotosistem ini menyerap energi cahaya terpisah dari PS II, tapi mengandung kompleks inti terpisahkan, yang mendapatkan elektron yang berasal dari H2O melalui kompleks inti PS II lebih dahulu. Sebagai sistem yang bergantung pada cahaya, PS I berfungsi mengoksidasi plastosianin tereduksi dan memindahkan elektron ke protein Fe-S larut yang disebut feredoksin.
Reaksi keseluruhan pada PS I adalah: Cahaya + 4PC(Cu+) + 4Fd(Fe3+) → 4PC(Cu2+) + 4Fd(Fe2+) Selanjutnya elektron dari feredoksin dipakai dalam tahap final pengangkutan elektron untuk mereduksi NADP+ dan membentuk NADPH. Reaksi ini dikatalisis dalam stroma oleh enzim feredoksin-NADP+ reduktase.
Reaksinya adalah: 4Fd (Fe2+) + 2NADP+ + 2H+ → 4Fd (Fe3+) + 2NADPH Ion H+ yang telah dipompa ke dalam membran tilakoid akan masuk ke dalam ATP sintase. ATP sintase akan menggandengkan pembentukan ATP dengan pengangkutan elektron dan H+ melintasi membran tilakoid. Masuknya H+ pada ATP sintase akan menciptakan ATP sintase bekerja mengubah ADP dan fosfat anorganik (Pi) menjadi ATP.
Reaksi keseluruhan yang terjadi pada reaksi jelas ialah sebagai berikut: Sinar + ADP + Pi + NADP+ + 2H2O → ATP + NADPH + 3H+ + O2.
Sedangkan dalam reaksi gelap terjadi seri reaksi siklik yang membentuk gula dari materi dasar CO2 dan energi (ATP dan NADPH). Energi yang dipakai dalam reaksi gelap ini diperoleh dari reaksi terang.
Pada proses reaksi gelap tidak dibutuhkan cahaya matahari. Reaksi gelap bertujuan untuk mengubah senyawa yang mengandung atom karbon menjadi molekul gula. Dari semua radiasi matahari yang dipancarkan, hanya panjang gelombang tertentu yang dimanfaatkan tumbuhan untuk proses fotosintesis, yaitu panjang gelombang yang berada pada kisaran cahaya tampak (380-700 nm). Cahaya tampak terbagi atas cahaya merah (610 - 700 nm), hijau kuning (510 - 600 nm), biru (410 - 500 nm) dan violet (< 400 nm).
Masing-masing jenis cahaya berbeda pengaruhnya terhadap fotosintesis. Hal ini terkait pada sifat pigmen penangkap cahaya yang bekerja dalam fotosintesis. Pigmen yang terdapat pada membran grana menyerap cahaya yang mempunyai panjang gelombang tertentu. Pigmen yang berbeda menyerap cahaya pada panjang gelombang yang berbeda.
Kloroplas mengandung beberapa pigmen. Sebagai contoh, klorofil a terutama menyerap cahaya biru-violet dan merah. Klorofil b menyerap cahaya biru dan oranye dan memantulkan cahaya kuning-hijau. Klorofil a berperan eksklusif dalam reaksi terang, sedangkan klorofil b tidak secara eksklusif berperan dalam reaksi terang. Proses perembesan energi cahaya mengakibatkan lepasnya elektron berenergi tinggi dari klorofil a yang selanjutnya akan disalurkan dan ditangkap oleh penerima elektron. Proses ini merupakan awal dari rangkaian panjang reaksi fotosintesis.
Reaksi Gelap (Siklus Calvin) dan fiksasi karbon
Reaksi gelap terjadi pada stroma kloroplas yang sanggup (bukan harus) berlangsung dalam gelap, lantaran enzim-enzim untuk fiksasi CO2 pada stroma kloroplas tidak memerlukan cahaya tetapi membutuhkan ATP dan NADPH yang menghasilkan dari reaksi terang. Reaksi gelap pada tumbuhan sanggup terjadi melalui dua jalur, yaitu siklus Calvin-Benson dan siklus Hatch-Slack.Pada siklus Calvin-Benson tumbuhan mengubah senyawa ribulosa 1,5 bisfosfat menjadi senyawa dengan jumlah atom karbon tiga yaitu senyawa 3-phosphogliserat. Oleh lantaran itulah tumbuhan yang menjalankan reaksi gelap melalui jalur ini dinamakan tumbuhan C-3. Penambatan CO2 sebagai sumber karbon pada tumbuhan ini dibantu oleh enzim rubisco.
Tumbuhan yang reaksi gelapnya mengikuti jalur Hatch-Slack disebut tumbuhan C-4 lantaran senyawa yang terbentuk sesudah penambatan CO2 ialah oksaloasetat yang mempunyai empat atom karbon. Enzim yang berperan ialah phosphoenolpyruvate carboxilase.
Mekanisme siklus Calvin-Benson dimulai dengan fiksasi CO2 oleh ribulosa difosfat karboksilase (RuBP) membentuk 3-fosfogliserat. RuBP merupakan enzim alosetrik yang distimulasi oleh tiga jenis perubahan yang dihasilkan dari pencahayaan kloroplas.
- Reaksi dari enzim ini distimulasi oleh peningkatan pH. Jika kloroplas diberi cahaya, ion H+ ditranspor dari stroma ke dalam tilakoid menghasilkan peningkatan pH stroma yang menstimulasi enzim karboksilase, terletak di permukaan luar membran tilakoid.
- Reaksi ini distimulasi oleh Mg2+, yang memasuki stroma daun sebagai ion H+, jikalau kloroplas diberi cahaya.
- Reaksi ini distimulasi oleh NADPH, yang dihasilkan oleh fotosistem I selama pemberian cahaya.
Fiksasi CO2 ini merupakan reaksi gelap yang distimulasi oleh pencahayaan kloroplas. Fikasasi CO2 melewati proses karboksilasi, reduksi, dan regenerasi. Karboksilasi melibatkan penambahan CO2 dan H2O ke RuBP membentuk dua molekul 3-fosfogliserat (3-PGA). Kemudian pada fase reduksi, gugus karboksil dalam 3-PGA direduksi menjadi 1 gugus aldehida dalam 3-fosforgliseradehida (3-Pgaldehida).
Reduksi ini tidak terjadi secara langsung, tapi gugus karboksil dari 3-PGA pertama-tama diubah menjadi ester jenis anhidrida asam pada asam 1,3-bifosfogliserat (1,3-bisPGA) dengan penambahan gugus fosfat terakhir dari ATP. ATP ini timbul dari fotofosforilasi dan ADP yang dilepas saat 1,3-bisPGA terbentuk, yang diubah kembali dengan cepat menjadi ATP oleh reaksi fotofosforilasi tambahan. Bahan pereduksi yang bersama-sama ialah NADPH, yang menyumbang 2 elektron. Secara bersamaan, Pi dilepas dan dipakai kembali untuk mengubah ADP menjadi ATP.
Pada fase regenerasi, yang diregenerasi ialah RuBP yang diharapkan untuk bereaksi dengan CO2 aksesori yang berdifusi secara konstan ke dalam dan melalui stomata. Pada final reaksi Calvin, ATP ketiga yang diharapkan bagi tiap molekul CO2 yang ditambat, dipakai untuk mengubah ribulosa-5-fosfat menjadi RuBP, kemudian daur dimulai lagi.
Tiga putaran daur akan menambatkan 3 molekul CO2 dan produk hasilnya ialah 1,3-Pgaldehida. Sebagian dipakai kloroplas untuk membentuk pati, sebagian lainnya dibawa keluar. Sistem ini menciptakan jumlah total fosfat menjadi konstan di kloroplas, tetapi mengakibatkan munculnya triosafosfat di sitosol. Triosa fosfat dipakai sitosol untuk membentuk sukrosa.
Demikian pembahasan wacana reaksi anabolisme dan tahapannya. Semoga bermanfaat.
Terimakasih. Sumber http://www.biologi-sel.com